پژوهشکده پلیمرو پتروشیمی ایران

پژوهشکده ی فرآیند

 

عنوان:

بررسی رفتار فیزیکی و مکانیکی نانو کامپوزیت های تهیه شده بر پایه الاستومر پلی الفینی و نانو لوله های کربنی تک دیواره

 

پایان نامه کارشناسی ارشد رشته مهندسی صنایع پلیمر

اساتید راهنما

دکتر محمد رضوی نوری

دکتر علی اکبر یوسفی

1392

برای رعایت حریم خصوصی نام نگارنده پایان نامه درج نمی شود

(در فایل دانلودی نام نویسنده موجود است)

تکه هایی از متن پایان نامه به عنوان نمونه :

(ممکن است هنگام انتقال از فایل اصلی به داخل سایت بعضی متون به هم بریزد یا بعضی نمادها و اشکال درج نشود ولی در فایل دانلودی همه چیز مرتب و کامل است)

فهرست مطالب

فصل اول: مقدمه……..2

1-1      کوپلیمر اتیلن- اکتن. 2

1-1- 1      سنتز و تولید. 3

1-1-2      طبقه بندی.. 4

1-1-3      خواص فیزیکی.. 5

1-1-4      ساختمان بلوری.. 6

1-1-5      کاربردها 7

1-2      نانوذرات کربنی.. 7

1-2-1      الماس.. 7

1-2-2      گرافیت.. 7

1-2-3       فولرین. 8

1-2-4      نانو لوله های کربنی.. 8

1-2-5      خالص سازی نانو لوله ها 10

1-3       معرفی الاستومر های گرما نرم. 10

1-3-1      تعاریف اولیه. 10

1-3-1      تاریخچه الاستومر های گرما نرم. 11

1-3-2      انواع الاستومر های گرما نرم. 13

1-3-3      خواص الاستومر های گرما نرم. 14

1-3-1      مزایا و معایب الاستومر های گرما نرم. 15

1-4      نانوکامپوزیت های پلیمری.. 16

1-4-1      فرآیند ساخت.. 18

1-5      اهمیت موضوع و اهداف پروژه 25

فصل دوم: مروری بر مطالعات انجام شده………26

2-1      نانو کامپوزیت پلی اتیلن- اکتن/ نانو لوله های کربنی چند دیواره 26

2-2      نانوکامپوزیت پلی اتیلن/ نانو لوله های کربنی چند دیواره 33

2-3        نانوکامپوزیت پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره 37

2-4      جمع بندی مطالعات.. 43

فصل سوم: تجربی45…….

3-1      مواد. 45

3-2      تهیه نمونه ها 45

3-3      آزمون ها 47

3-3-1      آزمون کشش… 47

3-3-2      آزمون تفرق اشعه ایکس/ زاویه باز. 47

3-3-3      آزمون میکروسکوپ الکترونی روبشی.. 48

3-3-4      آزمون گرماسنجی روبشی تفاضلی.. 48

3-3-5      آزمون میکروسکوپ الکترونی عبوری.. 49

3-3-6      آزمون گرما وزن‌سنجی.. 50

3-3-7      آزمون تحلیل گرمایی مکانیکی.. 50

3-3-8      آزمون رئولوژی.. 50

3-3-9      آزمون ثابت دی الکتریک… 51

3-3-10      آزمون مقاومت الکتریکی سطحی و حجمی.. 51

فصل چهارم: نتایج و بحث…..52

4-1      خواص مکانیکی.. 52

4-2      مورفولوژی.. 66

4-3      تبلور. 71

4-4      رئولوژی.. 76

4-5      خواص حرارتی.. 87

4-6      خواص الکتریکی.. 92

فصل پنجم: نتیجه گیری و پیشنهادات………………………….    95

مراجع ……. 98

فهرست شکل ها

شکل ‏1‑1: ساختار پلی اتیلن- اکتن. 3

شکل ‏1‑2: شماتیکی از دسته بندی انواع پلی اتیلن ها ]7[. 4

شکل ‏1‑3: رابطه بین چگالی و ترکیب درصد شیمیایی در کوپلیمرهای پلی اتیلن- اکتن ]8[. 5

شکل ‏1‑4: رابطه بین درصد بلورینگی ترکیب درصد شیمیایی در کوپلیمرهای پلی اتیلن- اکتن ]8[. 6

شکل ‏1‑5: نمایی از آرایش اتم کربن در الماس. 7

شکل ‏1‑6: نمایی از آرایش اتم کربن در گرافیت. 8

شکل ‏1‑7: نمایی از آرایش اتم کربن در فولرین. 8

شکل ‏1‑8: آرایش های مختلف کربن برای ساخت نانولوله ها 9

شکل ‏1‑9: آرایش های مختلف کربن برای ساخت نانولوله های کربنی.. 10

شکل ‏1‑10: تغییرات مدول خمشی الاستومر های گرما نرم با دما ]29[. 14

شکل ‏1‑11: محدوده سختی الاستومر های گرما نرم ]30[. 15

شکل ‏1‑12: فرآیند تولید محصول از الاستومر گرما نرم در مقایسه با فرآیند تولید برای یک الاستومر گرما سخت ]31[. 16

شکل ‏1‑13: نمایی از ساخت نانو کامپوزیت های پلی کربنات/ نانو لوله های کربنی با استفاده از روش محلولی]32[. 19

شکل ‏1‑14: تصویر میکروسکوپ الکترونی روبشی از سطح شکست نانو کامپوزیت های پلی کربنات/ نانو لوله های کربنی ]32[. 19

شکل ‏1‑15: تصویر میکروسکوپ انتقال الکترونی مربوط به دسته های نانو لوله های کربنی همراه با یک لایه پلی استایرن جذب شده، مربوط به نانو کامپوزیت پلی استایرن/ نانو لوله های کربنی با میزان 5/8% از نانو لوله های کربنی ]39[. 21

شکل ‏1‑16: نمایی از اتصال پلی متیل متاکریلات روی سطح نانو لوله های کربنی با استفاده از فرآیند پلیمریزاسیون رادیکالی انتقال اتمی ]42[. 22

شکل ‏1‑17: تصویر میکروسکوپ الکترونی روبشی از سطح شکست نانو کامپوزیت های پلی کربنات/ نانو لوله های کربنی. نانو کامپوزیت شامل 20% وزنی از نانو لوله های کربنی ( ). نانو کامپوزیت شامل 15% وزنی از نانو لوله های کربنی ( ) ]45[. 24

شکل ‏1‑18: تصویر میکروسکوپ الکترونی روبشی از سطح شکست نانو کامپوزیت حاوی 5/0% وزنی از نانو لوله های کربنی ]47[. 24

شکل ‏2‑1: طیف مادون قرمز نانو لوله های کربنی چند دیواره خالص(A) و نانو لوله های کربنی چند دیواره اصلاح شده (B)]52[. 27

شکل ‏2‑2: طیف مادون قرمز پلی اتیلن- اکتن اصلاح شده با اسید (A) و پلی اتیلن- اکتن اصلاح شده با اسید/ نانو لوله های کربنی چند دیواره اصلاح شده با تیونیل کلراید (5% وزنی) (B) ]52[. 28

شکل ‏2‑3: الگوی تفرق اشعه ایکس مربوط به پلی اتیلن- اکتن خالص (A)، پلی اتیلن- اکتن اصلاح شده/ نانو لوله های کربنی چند دیواره به میزان 5% وزنی (B)، پلی اتیلن- اکتن اصلاح شده/ نانو لوله های کربنی چند دیواره به میزان10% وزنی (C) و نانو لوله های کربنی چند دیواره عامل دار شده با اسید (D) ]52[. 29

شکل ‏2‑4: نمودار آنالیز وزن سنجی حرارتی پلی اتیلن- اکتن اصلاح شده با آکریلیک اسید ( )، نانو کامپوزیت پلی اتیلن-اکتن اصلاح شده با اسید/ نانو لوله های کربنی چند دیواره اصلاح شده به میزان 5% وزنی ( )، نانو کامپوزیت پلی اتیلن- اکتن اصلاح شده با اسید/ نانو لوله های کربنی چند دیواره اصلاح شده به میزان 10% وزنی ( ) و نانو لوله های کربنی چند دیواره ( ) ]52[. 30

شکل ‏2‑5: تصویر میکروسکوپ الکترونی از نانو لوله های کربنی چند دیواره عامل دار شده (A) و سطح شکست کششی نانو کامپوزیت پلی اتیلن اصلاح شده با آکریلیک اسید/ نانو لوله های کربنی چند دیواره به میزان 5% وزنی (B) ]52[. 31

شکل ‏2‑6: استحکام کششی نانو کامپوزیت های پلیمری بر حسب میزان درصد وزنی نانو لوله های کربنی چند دیواره ]52[. 32

شکل ‏2‑7: تصاویر میکروسکوپ الکترونی روبشی از سطح شکست نانو کامپوزیت پلی اتیلن با چگالی بالا/ نانو لوله های کربنی چند دیواره به میزان  5/2% وزنی ]59[. 33

شکل ‏2‑8: تصاویر میکروسکوپ الکترونی از سطح شکست نانو کامپوزیت پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره به میزان  5/2% وزنی ]59[. 34

 

شکل ‏2‑9 گرانروی مختلط ( ) بر حسب فرکانس ( ) ( ) و مدول حقیقی ( ) بر حسب فرکانس ( ) ( ) برای نانو کامپوزیت های پلی اتیلن با چگالی بالا/ نانو لوله های کربنی چند دیواره و پلی اتیلن با چگالی بالا در دمای 200 ]59[. 35

شکل ‏2‑10: نمودار زاویه فازی ( ) بر حسب مقدار مطلق مدول مختلط  برای نانو کامپوزیت های پلی اتیلن با چگالی بالا/ نانو لوله های کربنی چند دیواره ( ) و نانو کامپوزیت های پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره ( ) (نمودار ون گارپ – پالمن)] 59[. 36

شکل ‏2‑11: نمودار رسانایی نانو کامپوزیت های پلی اتیلنی بر حسب درصد وزنی نانو لوله های کربنی چند دیواره ]59[. 36

شکل ‏2‑12: تصویر میکروسکوپ الکترونی روبشی نانو کامپوزیت های پلیمری حاوی 0% وزنی (A)، 3/0% وزنی (B)، 5/0% وزنی (C)، 1% وزنی (D)،3% وزنی (E)،5% وزنی (F) و10% وزنی (G) از نانو لوله های کربنی چند دیواره ]63[. 38

شکل ‏2‑13: الگوهای تفرق اشعه ی ایکس برای نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره و نانو لوله های کربنی چند دیواره ]63[. 39

شکل ‏2‑14: نمودار تبلور و ذوب نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره ]63[. 40

شکل ‏2‑15: مقاومت سطحی و حجمی نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره ]63[. 41

شکل ‏2‑16: ثابت دی الکتریک و اتلاف دی الکتریک نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره، اندازه گیری شده در فرکانس 5 مگا هرتز و دمای اتاق]63[ .. 42

شکل ‏2‑17: استحکام کششی و کرنش شکست نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره ]63[. 43

شکل ‏2‑18: تاثیر میزان نانو لوله های کربنی بر سرعت جریانی مذاب نانو کامپوزیت های پلی اتیلن- اکتن/ پلی اتیلن با چگالی پایین/ نانو لوله های کربنی چند دیواره ]63[. 43

شکل ‏4‑1: منحنی های تنش- کرنش برای پلی اتیلن- اکتن خالص و نانو کامپوزیت ها. 53

شکل ‏4‑2: منحنی های تنش کرنش برای پلی اتیلن- اکتن خالص و نانو کامپوزیت های حاوی 1% وزنی از نانو لوله های کربنی. 53

شکل ‏4‑3: تغییرات مدول الاستیک نمونه ها به صورت تابعی از مقدار نانو لوله های کربنی. 55

شکل ‏4‑4: تغییرات مقادیر مدول بدست آمده از رابطه هالپین- سای و نتایج تجربی. 56

شکل ‏4‑5: تاثیر ثابت  بر مدول پیش بینی شده نانو کامپوزیت ها. 57

شکل ‏4‑6: تاثیر ثابت  بر مدول پیش بینی شده نانو کامپوزیت ها. 58

شکل ‏4‑7: مدول پیش بینی شده از رابطه اصلاح شده هالپین- سای و نتایج تجربی. 59

شکل ‏4‑8: تغییرات تنش شکست نمونه ها به صورت تابعی از مقدار نانو لوله های کربنی. 60

شکل ‏4‑9: تغییرات استحکام کششی بدست آمده از رابطه هالپین- سای و نتایج تجربی. 61

شکل ‏4‑10: تاثیر ثابت  بر استحکام کششی پیش بینی شده نانو کامپوزیت ها. 62

شکل ‏4‑11: تاثیر ثابت  بر استحکام کششی پیش بینی شده نانو کامپوزیت ها. 62

شکل ‏4‑12: استحکام کششی پیش بینی شده از رابطه اصلاح شده هالپین- سای و نتایج تجربی. 63

شکل ‏4‑13: تغییرات کرنش نمونه ها به صورت تابعی از مقدار نانو لوله های کربنی. 64

شکل ‏4‑14: تغییرات تنش تسلیم نمونه ها به صورت تابعی از مقدار نانو لوله های کربنی. 65

در این سایت فقط تکه هایی از این مطلب درج می شود که ممکن است هنگام انتقال از فایل ورد به داخل سایت کلمات به هم بریزد یا شکل ها درج نشود

شما می توانید تکه های دیگری از این مطلب را با جستجو در همین سایت بخوانید

ولی برای دانلود فایل اصلی با فرمت ورد حاوی تمامی قسمت ها با منابع کامل

به سایت مرجع

www.homatez.com

مراجعه نمایید

 

ثقل

شکل ‏4‑15: تغییرات انرژی شکست نمونه ها به صورت تابعی از مقدار نانو لوله های کربنی. 65

شکل ‏4‑16: تصویر میکروسکوپ الکترونی روبشی مربوط به نمونه EC0.1. 67

شکل ‏4‑17: تصویر میکروسکوپ الکترونی روبشی مربوط به نمونه EC0.5. 67

شکل ‏4‑18 : تصویر میکروسکوپ الکترونی روبشی مربوط به نمونه EC1. 68

شکل ‏4‑19: تصویر میکروسکوپ الکترونی روبشی مربوط به نمونه EC2. 68

شکل ‏4‑20: تصویر میکروسکوپ الکترونی روبشی مربوط به نمونه ETC1. 69

شکل ‏4‑21: تصویر میکروسکوپ الکترونی روبشی مربوط به نانو لوله های کربنی خالص. 70

شکل ‏4‑22: تصویر میکروسکوپ الکترونی عبوری مربوط به نانو کامپوزیت EC1. 70

شکل ‏4‑23: نمودار EDAX نانو لوله های کربنی خالص. 71

شکل ‏4‑24: الگوهای تفرق اشعه ی ایکس برای نانولوله های کربنی، پلی اتیلن- اکتن خالص و نانو کامپوزیت ها. 73

شکل ‏4‑25: منحنی های آزمون گرماسنجی روبشی تفاضلی حاصل از خنک کردن نمونه خالص و نانو کامپوزیت ها. 75

شکل ‏4‑26: منحنی های آزمون گرماسنجی روبشی تفاضلی حاصل از ذوب مجدد نمونه خالص و نانو کامپوزیت ها. 75

شکل ‏4‑27: تغییرات مدول ذخیره بر حسب کرنش برای نمونه خالص و نانو کامپوزیت ها. 77

شکل ‏4‑28: تغییرات مدول ذخیره و اتلاف با زمان برای نمونه خالص و نانو کامپوزیت ها در فرکانس زاویه ای 1. 77

شکل ‏4‑29: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه خالص و نانو کامپوزیت ها. 78

شکل ‏4‑30: مدول ذخیره در برابر فرکانس زاویه ای برای نمونه خالص و نانو کامپوزیت ها. 79

شکل ‏4‑31: مدول اتلافی در برابر فرکانس زاویه ای برای نمونه خالص و نانو کامپوزیت ها. 79

شکل ‏4‑32:    در برابر فرکانس زاویه ای برای نمونه خالص و نانو کامپوزیت ها. 80

شکل ‏4‑33: مدول های دینامیکی بر حسب فرکانس زاویه ای برای نمونه خالص و نانو کامپوزیت ها. 80

شکل ‏4‑34: طیف زمان آسایش برای نمونه خالص و نانو کامپوزیت ها. 82

شکل ‏4‑35: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EOC. 84

شکل ‏4‑36: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC0.1. 84

شکل ‏4‑37: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC0.25. 85

شکل ‏4‑38: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC0.5. 85

شکل ‏4‑39: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC0.75. 86

شکل ‏4‑40: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC1. 86

شکل ‏4‑41: گرانروی مختلط در برابر فرکانس زاویه ای برای نمونه EC2. 87

شکل ‏4‑42: نمودار تجزیه وزن سنجی گرمایی نمونه خالص و نانو کامپوزیت ها تحت محیط نیتروژن. 88

شکل ‏4‑43: نمودار تجزیه وزن سنجی گرمایی نمونه خالص و نانو کامپوزیت ها تحت محیط اکسیژن. 90


پاسخ دهید